新闻是有分量的

人类首次“看到”黑洞正面照(2)

2019-04-12 13:16栏目:美食

  黑洞阴影和周围环绕的新月般光环非常小。在拍照设备能力有限的情况下,要想拍摄到黑洞照片,必须找到一个看起来角直径足够大的黑洞作为目标。

  科学家们甄选之后,决定将近邻的两个黑洞作为主要目标:一个是位于人马座方向的银河系中心黑洞Sgr A*,另一个则是位于射电星系M87的中心黑洞M87*。此次照片“主角”正是M87中心的超大质量黑洞。

  沈志强说:“由于黑洞事件视界的大小与其质量成正比,这也意味着质量越大,其事件视界越大。我们选定的这两个黑洞质量都超级大,它们的事件视界在地球上看起来也是最大的,可以说是目前最优的成像候选体。”

  尽管被选择的两个黑洞已是最优成像候选体,但要清晰为它拍照,难度还是极其大。Sgr A*黑洞的质量大约相当于400万个太阳,所对应的视界面尺寸约为2400万公里,相当于17个太阳的大小。然而,地球与Sgr A*相距2.5万光年之遥。“这就意味着,它巨大的视界面在我们看来,大概只有针尖那么小,就像我们站在地球上去观看一个放在月球表面的橙子。”沈志强说。

  M87中心黑洞的质量更为巨大,达到了60亿个太阳质量。尽管M87中心黑洞与地球的距离要比Sgr A*与地球之间的距离更远,但因质量庞大,所以它的事件视界对科学家们而言,可能跟Sgr A*大小差不多,甚至还要稍微大一点。

  要想看清楚两个黑洞事件视界的细节,事件视界望远镜的空间分辨率要达到足够高才行。要多高呢?路如森说:“比哈勃望远镜的分辨率高出1000倍以上。”但也别以为,只要虚拟望远镜阵列的分辨率足够高,就一定能成功给黑洞拍照。如同观看电视节目必须选对频道一样,对黑洞成像而言,在合适的波段进行观测至关重要。

  此前的一系列研究表明,观测黑洞事件视界“阴影”的最佳波段约为1毫米。路如森说,这是因为气体在这个波段的辐射最明亮,而且射电波也可以不被阻挡地从银河系中心传播到地球。在这种情况下,望远镜的分辨率取决于望远镜之间的距离,而非单个望远镜口径的大小。

  为了增加空间分辨率,以看清更为细小的区域,科学家们在此次进行观测的望远镜阵列里增加了位于智利和南极的望远镜。沈志强说:“这样设置是为了要保证所有8个望远镜都能看到这两个黑洞,从而达到最高的灵敏度和最大的空间分辨率。”

  每年只有约10天观测期,照片问世前经过超级计算机长达两年的“冲洗”

  四大洲8个观测点组成的虚拟望远镜网络,让黑洞首次有了一张“正面照”。

  留给科学家们的观测窗口期非常短暂,每年只有大约10天时间。除了观测时间上的限制,拍摄对天气条件要求也极为苛刻。因为大气中的水对这一观测波段的影响极大,会影响射电波的强度,这意味着降水会干扰观测,要想事件视界望远镜顺利观测,需要所有望远镜所在地的天气情况都非常好。按照要求,计划选择的8个望远镜所在之处均海拔较高,降雨量极少,全部晴天的概率非常高。

  此外,要成像成功还必须要求所有望远镜在时间上完全同步。北京时间2017年4月4日,事件视界望远镜启动拍摄,将视线投向了宇宙。最后的观测结束于美国东部时间4月11日。观测期间,每一个射电望远镜都收集并记录来自于目标黑洞附近的射电波信号,这些数据此后被集成用于获得事件视界的图像。

  沈志强说:“为了确保信号的稳定性,事件视界望远镜利用原子钟来确保望远镜收集并记录信号在时间上同步。”

  拍照难,“洗照片”更不容易。射电望远镜不能直接“看到”黑洞,但它们将收集大量关于黑洞的数据信息,用数据向科学家们描述出黑洞的样子。在观测结束之后,各个站点收集的数据将被汇集到两个数据中心(分别位于美国麻省的Haystack天文台和德国波恩的马普射电所)。在那里,超级计算机通过回放硬盘记录的数据,在补偿无线电波抵达不同望远镜的时间差后将所有数据集成并进行校准分析,从而产生一个关于黑洞高分辨率影像。此后,经过长达两年的“冲洗”,今年4月10日,人类历史上首张黑洞照片终于问世。

  近年来,中国参与国际合作的广度和深度不断加大,在吸收世界创新养分的同时,也不断贡献中国智慧。